Finden Sie schnell elektrolytisches verfahren für Ihr Unternehmen: 7 Ergebnisse

Neutralisationsanlagen

Neutralisationsanlagen

Neutralisationsanlagen eignen sich zur pH-Wert-Korrektur in Abwässern unterschiedlicher Herkunft und Beschaffenheit. Serienmäßig werden Typen für eine Behandlungsmenge von 1.000 – 5.000 l/h angeboten. Dabei kann zwischen einem Durchlauf- oder Chargenverfahren gewählt werden. Die Durchsatz-mengen werden entscheidend vom pH-Wert und damit der Chemikalienzugabemenge des ankommenden Abwassers bestimmt. Eine Behandlungszeit von ca. 30 Minuten liegt den Auslegungskriterien zugrunde.
ELEKTROMOBILITÄT

ELEKTROMOBILITÄT

Der Mobilitätssektor befindet sich in einem der größten Transformationsprozesse seiner Geschichte. Mit dem Wechsel der Antriebstechnologie von Verbrennungsmotoren hin zu Elektroantrieben steht die Automobilbranche vor enormen Veränderungen. Die Elektrifizierung ist eine der Schlüsseltechnologien für den Verkehr der Zukunft. Deshalb ist Elektromobilität eines unserer Schwerpunktthemen der EVOPAR.
Spezialchemikalien

Spezialchemikalien

Auszug aus unserem Angebot an Spezialchemikalien für den Einsatz als: Haftvermittler • Kautschuk (NR, EPDM, (H)NBR, AEM, QM) - Metall (Stahl, Messing, Aluminium) • Kautschuk (NR, EPDM, (H)NBR, AEM, QM) - Kunststoff (PET, PC, PBT, PA, PUR, PTFE) • Kautschuk (NR, EPDM, (H)NBR, AEM, QM, FKM) - Kautschuk • Kunststoff (PET, PC, PBT, PA, PUR, PTFE) - Kunststoff Gleitmittel • Oberflächenchlorierung von Dienkautschuken (NR, NBR, SBR, BR) Stabilisatoren für • PET, PA, PBT, PUR, EVA, AU, TPE-U, TPE-A Aktivatoren für • Polymerisation (Ziegler-Natta) • Füllstoffe Vernetzer für • NR • EPDM • CR • (Hal)-IIR Retarder für • NR • NBR • SBR • BR Auftragsproduktion für • F&E Produkte • kundenspezifische Produkte • pharmazeutische Vorprodukte Unsere Spezialchemikalien können auf Wunsch auch als Masterbatch zur Verfügung gestellt werden. Unsere Kooperationspartner sind in Europa (EU, CH) und Asien ansässig und ISO 9001 zertifiziert.
Polymere

Polymere

Polymere sind Makromoleküle, die wie Ketten aus Wiederholungseinheiten - den Monomeren - zusammengesetzt sind. Dabei bestehen sie meist aus einem Gemisch unterschiedlicher Kettenlänge. Sie sind im Pflanzen- und im Tierreich von jeher allgegenwärtig in Form von Biopolymeren, wie Polypeptiden/Eiweiß, Stärke/Mais oder Cellulose/Holz. Seit etwa einem Jahrhundert kann man Polymere auch im Labor synthetisieren. Inzwischen spielen die industriell erzeugten Produkte (oft Kunststoffe genannt) - in Form von Kleidung, Verpackungsmaterialien, Autoreifen, Kosmetika und Lebensmitteln - eine so wichtige Rolle, dass sie aus dem modernen Leben nicht mehr wegzudenken sind. Sowohl Biopolymere und deren Derivate als auch spezielle synthetische Polymere erfüllen zunehmend anspruchsvolle Sonderaufgaben in Medizin, Kosmetik und Technik. Bei diesen maßgeschneiderten Einsätzen stört oft die Tatsache, dass die Polymeren auch bei gleicher chemischer Zusammensetzung meist Moleküle sehr unterschiedlicher Molmasse enthalten. Für linear gebaute Produkte bedeutet dies, dass sie eine breite Längenverteilung besitzen. Diese Besonderheit kann sowohl im Falle ihrer Verwendung als Pharmazeutika als auch bei ihrem industriellen Einsatz Probleme verursachen. Um besonderen Anforderungen zu genügen, ist daher eine Entfernung von synthesebedingten unvermeidbaren, störenden Bestandteilen notwendig. Diese Abtrennung zu kurzer oder zu langer Ketten nennt man Polymerfraktionierung. Im Gegensatz zu niedermolekularen Substanzen, die nur aus einer einzigen Art von Molekül bestehen, setzen sich Polymere aus einem Gemisch aus Molekülen mit unterschiedlichen Molekulargewichten zusammen. Daher werden Molekulargewichte von Polymeren immer als Mittelwert angegeben. Dabei gibt es verschiedene Arten der Mittelwertbildung, die sich in der Art der Wichtung unterscheiden. Die gängigsten Mittelwerte sind das zahlenmittlere Molekulargewicht Mn das gewichtsmittlere Molekulargewicht Mw und das zentrifugenmittlere Molekulargewicht Mz: wobei ni die Anzahl der Moleküle mit dem Molekulargewicht Mi bedeutet. Die verschiedenen Mittelwerte können mit unterschiedlichen analytischen Methoden bestimmt werden (Mn mittels Osmose, Mw mittels Lichtstreuung und Mz mit der Ultrazentrifuge). Die leistungsstärksten Methoden zur Bestimmung der Molekulargewichte sind die Gel-Permeations Chromatographie (GPC, auch Größenausschlusschromatographie genannt) und MALDI-TOF (matrix assisted laser deionization/ionization - time of flight mass spectroscopy) da sie die gesamte Molekulargewichtsverteilung und damit auch die sogenannte Polydispersität D bestimmen können. Die Polydispersität ist ein Maß für die Breite einer Molekulargewichtsverteilung. Für Polymere, die nur aus Molekülen einer einzigen Kettenlänge bestehen (z.B. Proteine), ist die Polydispersität gleich eins. Je unterschiedlicher die Kettenlängen in einem Polymer sind, desto größer wird D. Durch das Entfernen von kurzen und/oder langen Ketten - wie es bei der Fraktionierung getan wird - kann die Polydispersität einer Polymeren verringert werden. Dabei versagen normalerweise die für niedermolekulare Substanzen gängigen Methoden wie Destillation (da Polymere nicht flüchtig sind) oder fraktioniertes Auskristallisieren (da die meisten Polymere nicht kristallisieren). Eine Abtrennung muss daher im gelösten Zustand erfolgen. Eine Möglichkeit bietet dabei die oben erwähnte GPC. Allerdings wird diese Methode überwiegend für analytische Maßstäbe verwendet und ist für die Produktion größer Probenmengen ungeeignet. Für die Gewinnung grö
Nuklear­technologien

Nuklear­technologien

um Hochtemperatur-Reaktoren, Prozess-Anlagen und Energie-Prozesse Wir liefern das Know-how und die Technologien zur Erzeugung und Nutzung von nuklearer, thermischer und elektrischer Energie mittels inhärent sicherer (negativer Temperatur-Koeffizient) Kugelhaufen-Reaktoren unter Beachtung aller relevanten Regeln, Verträge, Genehmigungen sowie inter­nationaler Ab­kommen. Die HTGCR-Reaktoren liefern thermische und elektrische Energie für Strom-Versorgung, industrielle Prozesse (z. B. Metallurgie, Chemie-Synthesen) und für Hoch­temperatur-Prozesse wie Hoch­temperatur-Elektrolyse. (HTGCR High Temperature Gas-Cooled Reactor). Vorteil der sicheren Nuklear­technologie ist die CO²-freie Energie-Erzeugung für die gesamte industrielle Produktions- und Wert­schöpfungs­kette und für die End­verbraucher. Das Technologie-, Verfahrens­technik- und Reaktor-Know-how steht zur Ver­fügung für Hydro-Metallurgie, Elektro-Metallurgie, Extraktions- und Se­pa­ra­ti­onsverfahren bei Uran-Erz-Ver­arbeitung, Uran-Gewinnung und Auf­arbeitung radio­aktiv belasteter Ab­wässer. Ein weiterer Technologie-Schwer­punkt ist die Wieder­auf­arbeitung ab­ge­brannter Brenn­elemente und die Ge­winnung der ent­haltenen Actiniden. Das Engineering und die Verfahrens­technik liefern Spezial-Apparate für die Zer­kleinerung, die Auf­lösung und die Solvent-Extraktion (Zentrifugal-Extraktoren). Das Kern­technik-Know-how ist die Basis des Engineerings von Anlagen für die sichere Ver­ar­beitung von Roh­stoffen und die Ent­sorgung radio­aktiver Rest­stoffe (Auf­arbeitung, Inertisierung, Neutralisierung, Vitrifikation). Das Kerntechnik- und Material-Know-how be­inhaltet Technologien für den kontrollierten Rück­bau von Nuklear-Anlagen (z. B. Reaktoren, Versuchs­reaktoren und U-Boot-Reaktoren). Das vorhandene Keramik- und Komposit-Know-how unterstützt die Herstellung von abrieb-resistenten Keramik-Komposit-Kugeln als Brenn­elemente. Wichtiger Aspekt ist die thermo­dynamisch und effiziente Energie-Gewinnung mit­hilfe von Helium-Turbinen, gas­förmigem Helium als Wärme­träger und scCO²-Anlagen (super­kritisches CO2²-System) für die thermisch-zu-elektrische Energie-Um­wandlung. Breite Anwendbarkeit im Energie-, Antriebs- und Nuklear­technik-Bereich ergibt sich für temperatur- und korrosions­resistente Legierungen und Beschichtungen für Gas-Turbinen (Tantal, Zirkon-Boride, Zirkon-Carbide). Ein Schwerpunkt ist das Engineering von lang­lebigen Robotern für Extrem-Umgebungen (Hoch­temperatur, Vakuum, Elektro­magnetismus, Strahlung und Hoch­druck) zum Einsatz bei Havarien, Rückbau, Exploration und Produktion. Das hydro-metallurgische und Nuklear-Know-how findet Einsatz bei optimierter Ver­arbeitung radio­aktiv (z. B. mit Thorium und Uran) belasteter Wertstoff-Mineralien (z. B. Seltener Erden (Rare Earth Elements)). Dabei ist der korrosive und toxische Charakter (z. B. Fluoride) bei industrieller Ver­arbeitung und Rest-Schlamm/Abraum-Sicherung und -Sanierung besonders zu be­rück­sichtigen. Ein katalytischer Spezial-Reaktor ermöglicht die De­kon­ta­mi­na­t­ion von tritium­haltigem Wasser und Ab­trennung von Tritium für die He³-Gewinnung.
ÄTHERISCHE ÖLE

ÄTHERISCHE ÖLE

100 % naturreine ätherische Öle sind kraftvolle Kostbarkeiten, die ganzheitlich auf körperlicher und seelischer Ebene ihre vielfältigen Wirkungen entfalten.
Steriler Wärmetauscher

Steriler Wärmetauscher

Unsere Sterilwärmetauscher, mit Einzelrohren und Doppelrohrplatten, verhindern Medienvermischung selbst bei Undichtigkeiten in der Rohr/Rohrboden-Schweißverbindung. Dies ist entscheidend, um die Reinheit Ihrer Prozesse zu gewährleisten.